NashKamaz.ru: модели, ремонт, характеристики, автоклуб

Как читать электрические схемы? Разбор простой схемы



Разбираем принцип работы простой схемы

Лампы типа MR-16 разбираются без всяких усилий.

Судя по этикетке, лампа имеет модель MR-16-2835-F27. В ее корпусе расположено 27 SMD светодиодов. Они излучают 350 люмен. Эта лампа подходит для подключения в сеть переменного тока 220-240 В. Потребляемая мощность равна 3,5 Вт. Такая лампа светится белым цветом, температура которого 4100 градусов по Кельвину и создает узконаправленный поток за счет угла потока равного 120 градусам.

https://www.youtube.com/watch?v=ytadvertiseru

Чтоб выявить причину поломки, необходимо разобрать корпус лампы. Это делается без особых усилий.

Как видно на фото, на корпусе видна ребристая поверхность. Она выполнена для лучшего теплоотвода. Вставляем отвертку в одно из ребер и пытаемся приподнять стекло.

Получилось. Можно увидеть печатную плату, она приклеена к корпусу. Поддев ее отверткой, она отделяется.

Чтоб уменьшить время ремонта ламп, необходимо создать ее электрическую схему. Она довольно проста.

Внимание! Схема связана с фазой сети гальваническим способом. Применять ее для питания каких либо устройств запрещено.

Как же работает схема? На диодный мост VD1-VD4 через конденсатор C1 подается напряжение 220 В. Далее оно поступает на светодиоды HL1-HL27, которые включены в цепь последовательно. Число светодиодом может быть порядка 80 штук. Конденсатор С2 (чем больше емкость, тем лучше) — сглаживатель пульсаций выпрямленного напряжения.

C1- красный, C2- черный, диодный мост- корпус с четырьмя лапками.

Электросхема ламп не имеет элементов защиты. Понадобится резистор на 100-200 Ом, а лучше два. Один будет установлен в цепи подключения, второй будет служить защитой от перепадов тока.

Выше приведена схема с защитными резисторами. R3 защищает светодиоды и С2 конденсатор, R2 в свою очередь — диодный мост. Этот драйвер отлично подойдет для ламп, мощность которых меньше 5 Вт. Он легко запитает лампу, имеющую 80 светодиодов типа SMD3528. Если нужно уменьшить или увеличить ток, проводите манипуляции с конденсатором C1. Чтоб исключить мерцание, увеличьте емкость С2.

КПД такого драйвера менее 50 %. К примеру, для лампы MR-16-2835-F27 нужен резистор на 6,1 кОм и мощностью 4 Вт. Тогда драйвер будет расходовать мощность, превышающую мощность потребления светодиодов. Из-за большого выделения тепловой энергии поместить его в маленький корпус лампы не получится. В таком случае, можно отдельно сделать корпус под этот драйвер.

Следует помнить, что от количества светодиодов напрямую зависит КПД лампы.

Итак, идем дальше. С нагрузкой, работой и мощностью мы вроде как разобрались в прошлой статье. Ну а теперь, дорогие мои криворукие друзья,  в этой статье мы будем читать схемы и анализировать их, используя прошлые статьи.

От балды я нарисовал схемку. Ее функция – управление 40 Ваттной лампой с помощью 5 Вольт. Давайте же рассмотрим ее подробнее.

На микроконтроллеры эта схема вряд ли подойдет, так как ножка МК не потащит ток, который жрет реле.

Первый вопрос, которым мы должны себе задать: “Чем питается схема и откуда она берет питание? Сколько источников питания имеет? Как вы здесь видите, схема имеет два разных  источника питания с напряжением 5 Вольт и 24 Вольта.

Вспоминаем предназначение каждого радиоэлемента, который встречается в схеме. Пытаемся понять, для чего разработчик его здесь нарисовал.

Обозначение радиоэлементов на схемах

Клеммник

Сюда мы загоняем или цепляем либо источник питания, либо другой кусок схемы. В нашем случае, на верхний клеммничек мы загоняем 5 Вольт, а нижний, следовательно, ноль. То же самое и 24 Вольта. На верхний клеммник мы загоняем 24 Вольта, а нижний также ноль.

Заземление на корпус.

В принципе называть этот значок землей вроде как бы можно, но не желательно. В схемах так обозначается потенциал в ноль Вольт. От него отсчитываются и измеряются все напряжения в схеме.

Далее видим ключ S, который находится в  разомкнутом положении.

Как он действует на электрический ток? Когда он в разомкнутом положении, то  ток через него не протекает. Когда он в замкнутом положении, то электрический ток беспрепятственно начинает через него течь.

Он пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока. Для чего он нужен в схеме, объясню ниже.

Катушка электромагнитного реле.

Если на нее подать электрический ток, то она создаст магнитное поле. А раз попахивает магнитом, то к катушке устремятся разного рода железки. На железке находятся контакты ключа 1-2, и они замкнутся между собой. Более подробно про принцип работы электромагнитного реле можно почитать в этой статье.

Лампочка

Подаем на нее напряжение – лампочка горит. Все элементарно и просто.

В основном схемы читаются слева-направо, если, конечно, разработчик хоть немного знает правила оформления схем. Функционируют схемы тоже слева-направо. То есть слева мы загоняем какой-либо сигнал, а справа его снимаем.

Через катушку побежит электрический ток, она притянет за собой контакты 1-2, которые в свою очередь замкнутся и вызовут электрический ток в цепи 24 Вольта. В результате загорится лампочка. Если вы в курсе, что такое диод, то наверняка поймете, что через него электрический ток протекать не будет, так как он пропускает только в одном направлении, а сейчас направление тока для него противоположное.

Итак, для чего нужен диод в этой схеме?

Получается замкнутый контур катушка реле —-{amp}gt; диод, в котором происходит затухание ЭДС самоиндукции и преобразование ее в тепло на диоде.

Между контактами ключа проскочила бы маленькая искра (выделил синим кружочком), так как ЭДС самоиндукции всеми силами пытается поддержать ток в контуре. Эта искорка негативно сказывается на контактах ключа, так как на них остается нагар, который со временем их изнашивает. Но еще не это самое страшное.

Этот импульс может с легкостью пробить P-N переходы полупроводников и навредить им вплоть до полного отказа функционирования. В настоящее время диоды  уже встроены в самом реле, но еще не во всех экземплярах. Так что не забывайте звонить катушку реле на предмет встроенного диода.

Думаю, теперь всем понятно, как должна работать схема. В этой схеме мы рассмотрели, как ведет себя напряжение. Но электрической ток – это ведь не только напряжение. Если вы не забыли, электрический ток характеризуется такими параметрами, как направленность, напряжение и сила тока. Также не забываем про такие понятия, как мощность, выделяемая на нагрузке, и сопротивление нагрузки. Да-да, это все надо учитывать.

При рассмотрении схем, нам не надо с точностью до копейки вычислять силу тока, мощность и тд. Достаточно приблизительно понять, какая примерно сила тока будет в этой цепи, какая мощность будет выделяться на этом радиоэлементе и тд.

Итак, давайте пробежимся по силе тока в каждой ветви схемы уже при включении ключа S.

Как читать электрические схемы? Разбор простой схемы

Первым делом рассмотрим диод. Так как на катод диода в данном случае идет плюс, следовательно, он будет заперт. То есть в данный момент через него сила тока будет какие-то микроамперы. Можно сказать, почти ничего. То есть он никак не влияет на включенную схему. Но как я уже писал выше, он нужен для того, чтобы гасить скачок ЭДС самоиндукции при выключении схемы.

https://www.youtube.com/watch?v=ytpressru

Так как катушка реле у нас на 5 Вольт, то получается, что ток через катушку будет около 72 миллиампер, а потребляемая мощность составит 360 милливатт. О чем вообще говорят нам эти цифры? Да о том, что источник питания на  5 Вольт должен  как минимум выдавать в нагрузку более 360 милливатт.  Ну вот и разобрались с катушкой реле, и заодно с источником питания на 5 Вольт.

Далее, контакты реле 1-2. Какая сила тока будет проходить через них? Лампа у нас 40 Ватт. Следовательно: P=IU, I=P/U=40/24=1,67 Ампер. В принципе нормальная сила тока. Если бы получили какую-либо аномальную силу тока, например, более 100 Ампер, то стоило бы насторожиться. Также не забываем и про питание 24 Вольта, чтобы этот источник питания мог не напрягаясь выдать мощность более, чем  40 Ватт.

Резюме

Схемы читаются слева-направо (бывают редкие исключения).

Определяем, где у схемы питание.

Вспоминаем значение каждого радиоэлемента.

Смотрим направление электрического тока в схеме.

Смотрим, что должно произойти в схеме, если на нее подано питание.

Вычисляем приблизительно силу тока в цепях и мощность, выделяемую на радиоэлементах, для того, чтобы удостовериться, что схема реально будет работать и в ней нет аномальных параметров.

При большом желании можно прогнать схему через симулятор, например через современный Every Circuit, и глянуть различные интересующие нас параметры.

Продолжение——–{amp}gt;

Ремонт светодиодной лампы серии «LLC» E14 3W1 M1

После того, как защитное стекло было снято, можно осмотреть светодиоды. Если обнаружено малейшее черное пятнышко на поверхности светодиода, он вышел из строя. Проводите осмотр мест пайки, осмотрите качество выводов. В одной из ламп было обнаружено 4 плохо впаянных светодиода

Светодиоды, имеющие черные точки, были помечены крестиком. При внешнем осмотре светодиоды могут быть целые. Поэтому, нужно прозвонить их тестером. Для проверки понадобится напряжение чуть больше 3 В. Подойдет аккумулятор, батарейка, блок питания. За источником питания последовательно включается токоограничивающий резистор, имеющий номинал 1 кОм.

Щупами прикасаемся до светодиода. В одну сторону сопротивление должно быть малым (светодиод может светиться), в другую – быть равным десяткам мегаом.

Во время проверки необходимо зафиксировать лампу. На помощь может прийти банка.

Можно проверить светодиод без специальных приборов, если драйвер устройства цел. На цоколь лампы подается напряжение, выводы светодиодов закорачиваются пинцетом или отрезком провода.

Лампы светодиодные, устройство, схемы, ремонт, неисправные светодиодные лампы

Если видно свечение всех светодиодов, закороченный неисправен. Но такой метод подойдет, если в цепи вышел из строя 1 светодиод.

Если в цепи обнаружена поломка нескольких светодиодов, лампа будет гореть. Только ее световой поток уменьшиться. Просто закоротите места площадок, к которым были припаяны светодиоды.

Если при проверке оказалось, что светодиоды исправны, значит дело в драйвере или месте пайки.

В данной лампе обнаружилась холодная пайка проводника. Копоть, появившаяся из-за плохой пайки, оседала на дорожках платы. Для удаления копоти понадобилась тряпочка, смоченная спиртом. Провод выпаяли, залудили и припаяли. Эта лампа заработала.

Из всех ламп у одной была поломка драйвера. Диодный мост был заменен 4 диодами «IN4007», которые рассчитаны на ток 1 А и на обратное напряжение 1000 В.

Чтоб произвести замену неисправного LED, необходимо выпаять его, не повредив печатные проводники. Обычным паяльником это можно сделать с трудом, лучше надеть на паяльник жало, изготовленное из медной проволоки.

При запайке светодиода необходимо следить за полярностью. Установите светодиод на место пайки, возьмите паяльник на 10-15 Вт и прогрейте его торцы.

Если светодиод обгорел, и при этом произошло обугливание платы, это место следует очистить. Так как оно является проводником. Если площадка расслоилась, светодиод моно припаять к «соседям». Это делается в том случае, если дорожки ведут именно к ним. Просто возьмите кусочек провода, сверните в два-три раза и подпаяйте.

Технология ремонта лампы-«кукурузы» отличается от ремонта выше показанной лампы.

Ремонт такой лампы прост, так как светодиоды располагаются на корпусе. И для прозвонки не требуется ни каких лишних действий. Эта лампа была разобрана исключительно из-за интереса.

Техника проверки «кукурузы» не отличается от вышеописанной. Только в корпусе этих ламп установлено 3 светодиода. При прозвонке все 3 должны засветиться.

Если обнаружена поломка одного из светодиодов, закоротите его или впаяйте новый. На сроке службы лампы это не отразиться. Драйвер лампы не имеет развязывающегося трансформатора. Поэтому, любое прикосновение к дорожкам светодиодов неприемлемо.

Если светодиоды целы, дело в драйвере. Для того, чтоб осмотреть его, необходимо разобрать корпус.

Чтоб добраться до драйвера, нужно снять ободок. Подденьте его отверткой в самом слабом месте, он должен отклеиться.

Драйвер имеет такую же схему, что и наша первая лампа с тем отличием, что С1-1µF, С2- 4,7 µF. Провода длинные, поэтому драйвер вытягивается без усилий. После работ по замене светодиода, ободок был посажен на клей «Момент».

Ремонт лампы на 12 Вт делается по той же схеме. На корпусе не было обнаружено сгоревших светодиодов, поэтому пришлось вскрыть корпус, чтоб осмотреть драйвер.

С этой лампой возникли проблемы. Провода драйвера были слишком короткими, пришлось снять цоколь.

Цоколь выполнен из алюминия. Он крепился к корпусу с помощью закернения. Поэтому, нужно было высверлить места креплений сверлом, диаметр которого 1,5 мм. Далее цоколь был поддет ножом и снят. Провода, находящиеся внутри пришлось перекусить.

Внутри находились 2 одинаковых драйвера, каждый из которых запитывал 43 диода.

Драйвер окутан термоусаживающей трубочкой, ее пришлось разрезать.

Лампы светодиодные, устройство, схемы, ремонт, неисправные светодиодные лампы

После устранения неполадок, на драйвер насаживается эта же трубка и обжимается пластиковой стяжкой.

Схема драйвера подразумевает в себе защиту. С1 защищает от импульсных перепадов, R2, R3 от бросков тока. Во время проверочных работ были замечены обрывы R2. Скорее всего, на лампу было подано напряжение, превышающее норму. Резистора на 10 Ом не было, поэтому был впаян резистор на 5,1 Ом. Лампа засветилась. Далее нужно было подключить драйвер к цоколю.

Первым делом короткие провода были заменены более длинными. Драйверы были соединены по питающему напряжению. Чтоб прикрепить провода к резьбовой части цоколя, необходимо зажать их между пластиковым корпусом и цоколем.

А как подключиться к центральному контакту? Алюминий не паяется, поэтому провод был припаян к латуневой пластинке, в которой было высверлено отверстие под М 2,5. Подобное отверстие было высверлено в контакте. Все это было скручено винтом. Далее был одет цоколь и накерниванием закреплен к корпусу лампы. Лампа была пригодна к работе.

На внешний вид лампа сделана качественно. Корпус алюминиевый, дизайн выполнен красиво.

Лампа собрана надежно. Поэтому, чтоб ее разобрать, нужно снять защитное стекло. Для этого конец отвертки всовываем между радиатором. Стекло здесь фиксируется без клея, буртиком. Нужно опереться отверткой на торец радиатора и приподнять стекло вверх, используя отвертку как рычаг.

Тестер не показал поломку светодиодов. Значит, все дело в драйвере. Чтоб добраться до него, нужно открутить 4 винта.

Лампы светодиодные, устройство, схемы, ремонт, как снять стекло через паз в корпусе

Но меня настигла неудача. За платой была расположена плоскость радиатора. Она смазана пастой, которая проводит тепло. Пришлось собрать все, что я раскрутил. Я решил разобрать лампу со стороны цоколя.

Для того, чтоб снять цоколь, пришлось высверливать места кернения. Но он не снимался. Как оказалось, он был скреплен с пластмассой резьбовым соединением.

Радиатор нужно было отделить от пластикового переходника. Для этого, я произвел запил ножовкой по металлу в том месте, где пластмасса крепилась к радиатору. Далее поворотом отвертки детали отделились одна от другой.

Была произведена отпайка выводов от платы светодиодов, что позволило работать с драйвером. Его схема была более сложной по сравнению с другими драйверами. При осмотре был найден вздутый конденсатор 400 V 4,7 µF. Он был заменен.

Диод Шоттки «D4» типа SS110 оказался поврежденным. Он находится внизу слева на фото. Он был заменен аналогом «10 BQ100», имеющим 1 А и 100В. Лампочка засветилась.

Лампа похожа на «LLB» LR-EW5N-5, но ее конструкция изменена.

Защитное стекло крепится с помощью кольца. Если подцепить место стыка кольца и стекла, оно легко снимется.

Печатная плата выполнена из алюминия. На ней расположены девяти кристальные LED светодиоды количеством 3 штуки. Плата крепится 3 винтами к радиатору. Проверка не выявила проблем с светодиодами. Значит дело в драйвере. Опыт ремонта похожей лампы показал, что лучше сразу отпаять провода, которые идут от драйвера. Разборка лампы производилась со стороны цоколя.

Кольцо, соединяющее цоколь и радиатор, снялось с большим усилием. При этом кусочек откололся. А все из-за того, что оно было прикручено 3 саморезами. Драйвер был извлечен.

Саморезы располагаются под драйвером, добраться до них можно крестообразной отверткой.

Этот драйвер выполнен на основе трансформаторной схеме. Проверка показала исправность всех частей, кроме микросхемы. Данных о ней я не нашел. Лампа было отложена в качестве донора.

Эта лампа похожа на лампу накаливания. Первое, что можно заметить- широкое металлическое кольцо.

Я приступил к разборке лампы. Первым делом нужно было снять плафон. Как оказалось, он был посажен на основание эластичным компаундом. После того, как я снял его, понял, что это было напрасно.

https://www.youtube.com/watch?v=ytdevru

В лампе находился 1 светодиод, мощность которого была равна 3,3 Вт. Его можно было проверить со стороны цоколя.

Лампа была скреплена с корпусом с помощью «левой» резьбы. Вращать цоколь нужно против часовой стрелки, если смотреть на него со стороны центрального контакта.

Причиной поломки был провод, который отпал от резьбы на цоколе. Пайкой алюминий не возьмешь, поэтому нужно было искать вариант крепления провода.

К имеющемуся проводу был припаян кусочек 5 см для наращивания. В точке кернения было высверлено отверстие, диаметр которого был равен 2 мм. В него был продет провод и намотан на винт. Сам винт был вставлен в отверстие и зажат гайкой. Эта лампа светилась, как новая.

Лампу типа «LL» GU10-3W с виду было сложно разобрать. Стекло начинало трескаться в тот момент, когда я пытался его извлечь.

  • G — наличие штыревого цоколя;
  • U — лампа энергосберегающая;
  • 10 – размер между штырями (измеряется в мм)

Благодаря расширительным штырям, лампа крепко держится в патроне.

Эта лампу можно было разобрать при помощи высверленного отверстия. Место сверления находилось на уровне печатной платы. Свело было выбрано диаметром 2,5 мм. Во время сверления нужно учесть тот факт, что сверло может повредить светодиод. Если дрели нет, то отверстие можно сделать шилом.

В проделанное отверстие задевается отвертка. Используя ее как рычаг, необходимо приподнять стекло. Если при проверке светодиодов проблем не выявлено, извлекаем печатную плату.

В обеих лампах были обнаружены сгоревшие резисторы номиналом 160 Ом. По размеру можно было установить, что их мощность равна 0, 25 Вт. Она не соответствует мощности, которая выделяется при работе лампы.

Плата была залита силиконом, отсоединять ее я не стал. Я заменил сгоревшие резисторы более мощными. В одной лампе применил резистор на 150 Ом и 1 Вт, на другой 2 параллельно спаянных на 320 Ом и 0,5 Вт.

Лампы светодиодные, устройство, схемы, ремонт, стекло с ламочки снято

Во избежание короткого замыкания, выводы резисторов были промазаны силиконом. Он действует как изолятор.

На рынке можно встретить 2 вида силикона: жидкий в трубочках и твердый, имеющий вид стержня. Стержневой хорош тем, что его можно отделить паяльником и нанести на нужную поверхность. После застывания он становится крепким.

Анализ причин отказа LED ламп MR-16-2835-F27

Таблица анализа причин отказа светодиодных ламп MR-16-2835-F27
Вид отказа Количество отказавших ламп Причина отказа
Отказ светодиодов 6 В схеме драйвера нет элементов защиты светодиодов от бросков тока
Непропай выводов светодиодов 1 Нарушение технологии пайки
Непропай токоподводящего провода 1 Нарушение технологии пайки
Пробой диодного моста 1 Дефект комплектации
Сломан штырь в цоколе 1 Небрежное обращение с лампой при подключении

https://www.youtube.com/watch?v=ytpolicyandsafetyru

По данным таблицы можно сделать вывод, что поломки ламп зачастую происходят из-за выхода из строя светодиодов. Причиной тому является отсутствие защиты в схеме. Хотя место под варистор имеется на плате.

Оставьте свой отзыв

Сообщение